Glucagon-expressing neurons within the retina regulate the proliferation of neural progenitors in the circumferential marginal zone of the avian eye.

نویسندگان

  • Andy J Fischer
  • Ghezal Omar
  • Nathaniel A Walton
  • Thomas A Verrill
  • Cecilia G Unson
چکیده

Glucagon-expressing retinal amacrine cells have been implicated in regulating postnatal ocular growth. Furthermore, experimentally accelerated rates of ocular growth increase the number of neurons added to the peripheral edge of the retina. Accordingly, we assayed whether glucagon-expressing neurons within the retina regulate the proliferation of progenitors in the circumferential marginal zone (CMZ) of the postnatal chicken eye. We found that glucagon-containing neurites are heavily clustered within the CMZ at the peripheral edge of the retina. Many of these neurites originate from a cell type that is distinct from other types of retinal neurons, which we termed large glucagon-expressing neurons (LGENs). The LGENs are immunoreactive for glucagon and glucagon-like peptide 1 (GLP1), have a unipolar morphology, produce an axon that projects into the CMZ, and are found only in ventral regions of the retina. In dorsal regions of the retina, a smaller version of the LGENs densely ramifies neurites in the CMZ. Intraocular injections of glucagon or GLP1 suppressed the proliferation of progenitors in the CMZ, whereas a glucagon-receptor antagonist promoted proliferation. In addition, we found that glucagon, GLP1, and glucagon antagonist influenced the number of progenitors in the CMZ. We conclude that the LGENs may convey visual information to the CMZ to control the addition of new cells to the edge of the retina. We propose that glucagon/GLP1 released from LGENs acts in opposition to insulin (or insulin-like growth factor) to regulate precisely the proliferation of retinal progenitors in the CMZ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin-related growth factors stimulate proliferation of retinal progenitors in the goldfish.

The retina of the adult goldfish grows throughout the life of the animal, in part, by the continual addition of new neurons. Further, destruction of extant neurons in this tissue stimulates neuronal regeneration. In an attempt to identify growth factors that regulate both normal and injury-stimulated neurogenesis, we used organ culture techniques and tested nine peptide growth factors for their...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens.

In warm-blooded vertebrates it is generally accepted that after early stages of development new neurons are not added to the retina. Contrary to this belief, we show here that hatched chickens have a zone of proliferating cells at the peripheral margin of the retina, similar to that of fish and amphibians. We found that cells at the peripheral edge of the retina incorporated the thymidine analo...

متن کامل

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 44  شماره 

صفحات  -

تاریخ انتشار 2005